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Abstract. The correlation coefficient vs. prediction time profile has been widely used to distinguish chaos
from noise. The correlation coefficient remains initially high, gradually decreasing as prediction time in-
creases for chaos and remains low for all prediction time for noise. We here show that for some chaotic
series with dominant embedded cyclical component(s), when modelled through a newly developed scheme
of periodic decomposition, will yield high correlation coefficient even for long prediction time intervals,
thus leading to a wrong assessment of inherent chaoticity. But if this profile of correlation coefficient vs.
prediction horizon is compared with the profile obtained from the surrogate series, correct interpretations
about the underlying dynamics are very much likely.

PACS. 05.45.Ac Low-dimensional chaos – 05.45.Tp Time series analysis

1 Introduction

Low-dimensional chaos but seemingly random behaviour
is an ubiquitous phenomenon in nature. For sparse time
series (those containing data points in the order of ∼1000–
2000), one is simply interested to detect the presence of
low-dimensional chaos. In the past, the identification of
chaotic dynamics in time series relied heavily on the esti-
mation of the dimension of the underlying attractor [1–3].
But this approach [3] has certain limitations [4]. Other ap-
proaches [5,6] to detect the underlying chaos exploit the
intrinsic deterministic properties of the chaotic system.
Since chaotic systems obey certain definite rules, limited
predictions are possible although long term predictions
are not possible due to the extreme sensitivity of it’s ini-
tial conditions. Sugihara and May [7] proposed a modified
version of the prediction algorithm originally proposed by
Lorenz [8], which are based upon a library of past pat-
terns in a data series. The predicted series is statisti-
cally compared to the original series and corresponding
Pearson’s linear correlation coefficient (ρ) vs. prediction
time (Tp) profile is used to differentiate between chaos
and additive noise. In chaotic processes, ρ is shown to fall
gradually starting from a high value whereas in random
processes it remains steady at much lower value. Numer-
ous research reports have been published using this feature
of ρ vs. Tp profile for analysing the underlying dynamics
of processes in diverse areas, e.g., childhood epidemics [7],
lynx pelt data [9], vertical ground movements of an active
caldera [10], and spatial patterns [11].
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In this paper, we initially raise a question concerning
the role of ρ as a reliable measure to distinguish chaos
from noise. We show that by seeing only the ρ vs. Tp pro-
file may infer incorrectly for cyclical chaotic process (a
process with some degree of oscillation). Since nature is
unbounded with such irregular cyclical phenomena, it will
be noteworthy to pay attention to these processes. Here we
use a relatively new method for the detection of multiple
amplitude modulated cyclical components from a compos-
ite time series. The unique feature of this decomposition
is that the method is completely data-adaptive, so the pe-
riodic waveform may be nonsinusoidal in nature. A new
scheme of periodic prediction is also used. The variation
of ρ for the original data series is statistically compared
with the ρ for the surrogate data sets.

2 Modelling and prediction

The modelling and prediction procedure used involves the
following steps: (i) Detection of the presence of a domi-
nant amplitude modulated component. (ii) Extraction of
the associated component. (iii) Repetition of steps (i) and
(ii) until no further component is detectable. (iv) Long
term prediction of the given series through the periodic
prediction of the individual components.

The details of the procedure is as follows.
Consider an observable scalar time series {x(k), k =

1, 2, . . . , T}, where T is the length of time series.
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Consider the m× n matrix,

An =


x(1) x(2) . . . x(n)

x(n+ 1) x(n+ 2) . . . x(2n)
...

...
. . .

...
x(n(m− 1) + 1) x(n(m− 1) + 2) . . . x(nm)


(1)

It may be noted that the configured matrix An is differ-
ent from the conventional trajectory matrix formed by the
time-lagged delay vectors. This type of matrix configura-
tion is advantageous in the context of latent cycle detec-
tion from the original data series. If the series is repetitive
with cyclicity N , a rank redundancy will develop for the
matrix An with n = N . We employ singular value decom-
position (SVD) [12] for this purpose. For any matrix An,
it yields An = USVT, where U and V are orthogonal
matrices and S = diag(σ1, σ2, . . . , σp : 0), the diago-
nal elements of S are called the singular values (s.v.) of
An. The singular values of the matrix An are precisely
the lengths of the semi-axes of the hyper-ellipsoid E de-
fined by E = Anv : ||v||2 = 1. A physical analogy to
this procedure is that if we think of the row vectors of
the matrix An as the mass distribution of a body in the
n-dimensional space, finding the right singular vectors cor-
responds to finding the axes of inertia of the body. The
singular values are then the root-mean-square projections
of its mass distributions onto each axis of inertia. If {x(k)}
is a periodic process with periodicity n, all the row vec-
tors of An are equal or linearly correlated, so only one
axis of inertia of an n-dimensional sphere is needed to de-
scribe the evolution of the process. This phenomenon is
reflected in the rank of the matrix or more specifically in
the singular values. The rank of An is equal to the num-
ber of nonzero s.v. of An. The exact rank redundancy is
developed for strict periodic process, but one will hardly
get any periodic process in ideal sense. So when the row
length is just equal to the underlying dominant periodicity
or its higher integer multiples, one is expected to get ma-
trices with high condition number though they may be of
full rank. Since we are in search of a dominant repetitive
component, we measure σ1/σ2 which acts as a measure
of closeness to rank-oneness. For different configurations
of An (with varying row length n), we find the ratio of
the σ1/σ2. If the series {x(k)} is having a latent rhythmic
component of cycle length N , one is supposed to find a
series of peaks at n = iN (i, any positive integer) in the
profile of this s.v. ratio vs. varying n. The range of i de-
pends on the stability of the associated component. This
spectrum of σ1/σ2 vs. the row length or orbit length (n)
may be called the p-spectrum [13] due to its ability for the
detection of any latent periodic component in an irregular
cyclical series.

After detection of the dominant cycle N , configure
{x(k)} as matrix An with row length n = N and find its
sv-decomposition; u1σ1vT

1 is the best cyclical component
of period-N obtainable from the series in least-squares
sense. u1σ1 (which we model as the series {g(k)}) rep-
resents the scaling factors or amplitudes associated with

the successive periods or orbits and vT
1 is the most repre-

sentable pattern among all the orbits normalized to unit
length. The time series formed by the successive rows of
u1σ1v1T will be at least nearly periodic with fixed period
length N or it can be called as an amplitude modulated
periodic time series. The unique feature of the proposed
decomposition is that the periodic component may be non-
sinusoidal in nature. Actually it depends on the nature
of v1.

The matrix (AN − u1σ1vT
1 ) is converted to a residual

time series {xr(k)}. The p-spectrum of {xr(k)} will show
presence of additional cyclical component (if any), which
can be extracted the same ways as above, and the process
is repeated. The extraction stops when the p-spectrum
does not show any repetitive peaks.

In the context of estimation as well as prediction, we
assume vT

1 to remain stationary throughout the evolution
process. So the prediction is to be performed for the {g(k)}
series. Since the length of the {g(k)} series is short (usually
∼ 20 or depends on the number of oscillations), a parsi-
monious model has to be produced. The prediction proce-
dure is basically two folded. The variables are rotated by
modified QR with column pivoting factorization [14] and
best set of variables are selected through the minimization
of the Mallow’s Cp criterion [15]. So conventional p-step
ahead prediction transforms in to p-period ahead predic-
tion as g(k + p|k)vT

1 where g(k + p|k) is the p-step ahead
prediction of the series {g(k)} produced at time k; this is
the inherent advantage of the periodic modelling over the
existing prediction schemes.

The performance of the prediction is assessed through
computing the Pearson’s product moment correlation co-
efficient (ρ) between the original series and the predicted
series. For pairs of quantities (xi, yi), ρ can be calculated
as follows [16]:

ρ =
∑Tp
i=1(xi − x)(yi − y)√∑Tp

i=1(xi − x)2
∑Tp
i=1(yi − y)2

(2)

where x and y are the mean of the series {xi} and {yi},
and Tp is the length of the series; here it refers to the
prediction horizon. The values of ρ are typically 0 and 1
for uncorrelated and identical predictions respectively.

3 Results

Consider the 3 variable (X,Y, Z) Rössler attractor [17]:

dx
dt

= −X − Z
dy
dt

= X + 0.2Y

dz
dt

= −0.4 +XZ − 5.7Z. (3)

The set of the equations is numerically integrated with
the 4-th order Runge-Kutta method and first 3000 points
is discarded as initial transients. We generate 4200 data
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Fig. 1. (a) The p-spectrum of the X variable, showing peaks
appearing at n = 115, 230, 345, 460, . . . clearly stand for the
presence of one dominant component of periodicity 115. (b)
The p-spectrum of the residual series obtained through the
subtraction of the first cyclical component from the original
series. The peaks in the p-spectrum at n = 230, 460, 690, . . .
suggest presence of additional cyclical component of period
230. (c–d) The individual cyclical components extracted from
the X variable of the Rössler map with periodicity 115 and 230
respectively. For the first component, antipersistence behaviour
(large amplitude followed by small amplitudes and vice versa)
in scaling factor sequences is obtained.

points of each of the state variables. First 2000 data points
are used for the estimation and the rest 2200 data points
are used for assessing the prediction in out-of-sample sense
(i.e., when predicting the later part of the data, we have no
access to it). This attractor has sharp peaks in the power-
spectrum due to very small diffusion constant [19]. In the
p-spectrum (Fig. 1a), we find the repetitive comparatively
large peaks appearing at a regular interval at n = 115,
230, 345, 460, 575, . . . indicating the presence of most
dominant component of cycle length 115.

The first residual series is formed after subtracting
this cyclical component from the original series. The p-
spectrum of the first residual is shown in Figure 1b. Here
also repetitive peaks are observed at n = 230, 460, 690, . . .
which is due to an additional cyclical component of pe-
riodicity 230. In the subsequent residual series, no fur-
ther periodicity is detectable through p-spectrum. So we
model the X variable as the sum of two cyclical compo-
nents of periodicity 115, and 230 respectively. The cyclical
components for the two periodicities of 115 and 230 are
shown in Figures 1c, d. It is very explicit that each cyclical
component acts as an amplitude modulated wave where
the modulated wave is fairly nonsinusoidal. And it has to
be mentioned that although the periodicity of the second
component is twice that of the first, it is not a harmonic
one in the Fourier sense which can be easily justified by
inspecting their patterns.
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Fig. 2. (a–c) True predictions (original series in solid line),
predicted series in dashed line) of X, Y , and Z variables. Note
that for Z variable, comparatively poor amplitude matching is
obtained due to its point process like behaviour (i.e. the en-
ergy being nonuniformly distributed throughout the flow). (d)
Prediction performance in terms of ρ vs. Tp for the 3 states (X
variable in solid, Y in dash, and Z in dotted line respectively).

Similarly, we detect one cyclical component of period-
icity 232 from the Y series, and one cyclical component
of periodicity 230 from the Z series. If we compare the
phase space of the true trajectories and the reconstructed
through the estimated state variables (figures not shown),
it suggests that the proposed method successfully captures
the underlying dynamics of the Rössler equation macro-
scopically through the proposed periodic decomposition of
each of the state variables.

Figures 2a–c show the true prediction (over a predic-
tion horizon of 1 to 2200 data points) for the X , Y and
Z variables respectively, based on the detected periodic
components. For the X variable, initially good fit is ob-
tained in the first 2 oscillations which is followed by an
overestimation in amplitude prediction in the 3rd oscilla-
tion. Finally for the last 2 oscillations, we get again good
match in terms of phase and amplitude. For Y and Z vari-
ables, we find that the predicted series are able to capture
the directions of excursions of the states quite closely, al-
though the amplitudes do not match so closely. So for
each variable, the detection of the amplitude modulated
component(s) is well justified. Figure 2d demonstrates the
prediction performance in terms of correlation coefficient.
For X variable, we find asymptotically flat ρ vs. Tp profile
saturating at very high value (> 0.9). For Y variable, ρ
drops to 0.5 around Tp = 80 which is followed by a steep
increase and finally saturates at high value (> 0.8). For Z
variable, a step wise decrease curve is obtained, where the
length of a step is somewhat related to the periodicity.

The narrow bandwidth of the power spectra of Rössler
also indicates the existence of few number of predominant
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frequency of oscillation1; thus uncertainty lies in the mea-
surement of the time for one cycle of the periodic com-
ponent, but it does not grow in time [20]. We think that
for a cyclical series with or without chaoticity with almost
fixed periodicity, a periodic model (like the one adopted)
is always likely to produce high ρ irrespective of Tp unless
the associated pattern is highly unstable and not always
unidirectional. If one looks carefully Figure 2, in almost
all the cases close phase (the term “phase” here is only re-
lated with the directions of excursions) match is obtained
though mismatch in amplitudes are clear. Here the used
statistic is correlation coefficient which is completely lin-
ear. So good prediction in period will yield very high ρ
though the amplitudes may mismatch. That happens in
our case also. The model captures the inherent dominant
periodicity correctly which is reflected in the phase match-
ing in the predicted domain. So highlighting only this pro-
file, one is tempted to infer about the non-chaoticity of the
process.

The same study is now continued on the surrogate
data sets, where the null hypothesis is that the data is
nothing but the monotonous transformation of a Gaussian
linear process. The iterative scheme [18] is implemented
so that the surrogate possesses the same power spectrum
and distributions of the original data. We find that the
surrogates of the X variable show only one periodic com-
ponent (∼ 230) and ρ sets at a much lower value than
the prediction for original data, which is as expected. The
two distributions (Fig. 3) are significantly different; Mann-
Whitney rank-sum statistic (M) [21] gives 21.672. Similar
results have been found for Y and Z variables. So through
the surrogate analysis, the determinism is corroborated for
the Rössler series.

Next we analyse a simple linear stochastic model [22]:

Wk+1 = 0.925(Wk + 1.07(Wk −Wk−1) + 0.25η) (4)

where η is white noise between −0.5 and 0.5. The model
produces almost periodic time series with a narrow band
power spectrum. Estimating over 500 data points, two pe-
riodic components are found with periodicity 23 and 22.
Here very good estimation (energy of the error ∼ 3% of
the original energy) is obtained, whereas in the prediction
domain ρ decays very rapidly and sets to a much lower

1 We have tried with approximating the Rössler attrac-
tor with few sinusoidal components (= 5) estimated through
Fourier spectra. In the estimated domain, good fit is obtained
due to the forcing by least-squares, but the prediction is com-
pletely meaningless in terms of both phase and magnitude. So
this also proves that although the power spectra of the Rössler
attractor contains very sharp peaks, the underlying dynamics
lies beyond the scope of the Fourier analysis. Again instead of
using the proposed scheme of prediction, we have tried with
mean value prediction for the {u1σ1} series and compute the
ρ. But here it falls gradually thus exhibiting the superiority of
the adopted scheme.

2 For a two-tailed test at α = 0.05, t0.05(2),∞ = 2.33; if |M | >
2.33, we can say that the probability that the two sets of ρ vs.
Tp distributions are random samples of the same distributions
is < 0.01.
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Fig. 3. Prediction performance (dotted line) of surrogates with
the original data (solid line). The dashed curve is obtained by
averaging the ρ vs. Tp curves for 10 set of surrogates.

value, typically ρ = 0.28 for Tp = 430. The surrogate of
W also shows two periodicities and the ρ of the surrogates
are compared with the original; the corresponding statis-
tic (M) is 1.76 thus leading to the acceptance of the null
hypothesis of linear Gaussian process.

It is also reported [23] that the initial decay (may be
microscopically small) of ρ is somewhat related to the av-
erage rate of loss of information which gives an estimate
of the Kolmogorov entropy (K2), the sum of positive Lya-
punov exponents. On the basis of certain statistical prop-
erties of the predicted series (equality of mean and vari-
ance), K2 may be obtained by computing the initial slope
of log(1−ρ) vs. Tp. For the X variable of the Rössler series,
using first 10 points (in this range, the value of ρ is greater
than 0.9999), we get K2 = 0.135 which is very close to the
theoretical value =0.13 [24]. Similar analysis on the Y and
Z variables yield 0.1491 and 0.1100 respectively. But it has
to be noted that this estimation is very much dependent
on the number of points used since accommodating longer
prediction time span results in a deviation from required
linearity.

For the much debated measles series of New York [7],
we obtain two annual components. Here a high ρ (= 0.936)
is obtained even for wide Tp (= 60 months). The surrogate
of the measles series shows only one seasonal component,
and ρ for Tp = 60 is typically 0.823; the M-W statistic is
4.6, thus the measles series is accepted to be deterministic.
Here the estimated entropy is 0.92 though the direct com-
putations of the SEIR equations indicates values ranging
between 0.4–0.5 bpy [25]. The overestimation may be due
to the presence of the strong seasonal cycle [23].

4 Conclusions

The results presented here initially raises one concern
about the role of ρ in differentiating low-dimensional
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chaos from noise. Earlier numerous research reports have
confirmed the underlying chaoticity of various systems
through the decaying nature of ρ with increasing predic-
tion time. With different examples, we have shown that
great cautions are needed to interpret the profile of ρ. It
has been shown here that for cyclical process, ρ remains
flat or maintains high value irrespective of Tp when the
system is periodically modelled. Through different exam-
ples along with the surrogate analysis, we have shown that
the underlying dynamics can also be truly verified with
such profile.
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